

 © 2002-2016 PDFTron Systems, Inc. 1 of 24

WebViewer Developer Guide
version 2.2.0

 © 2002-2016 PDFTron Systems, Inc. 2 of 24

Table of Contents

1. Introduction
Audience and Scope
WebViewer Components

Client-side Viewer Application
Platforms Supported

WebViewer Document Backends
PDFNetJS
XOD Backend

PDFNet SDK with WebViewer Add-on
DocPub Command-line Converter

Your Server Component
WebViewer and Document Hosting
Annotation Handling

2. WebViewer Quick Start
Using JavaScript with WebViewer

3. WebViewer Features
Customization Framework

Configuration Options
External Configuration File
Pass Custom Data through WebViewer

Annotations and Forms
Markup Annotations

Permission Checking
Read-only Mode
Toggle Annotations

Forms
Supported Field Widget Types
Supported Form Actions

Processing Annotations and Forms
Loading Annotations and Form Fields
Exporting Annotations and Form Fields

Merging XFDF Annotations
Samples/Tutorials

Advanced Features
Document Encryption/Decryption

Encryption on XOD Conversion

 © 2002-2016 PDFTron Systems, Inc. 3 of 24

Decryption on Client
Offline Mode

Getting Started
Downloading a Document
Enabling Offline Viewing

Internationalization
Creating your own Translations

4. Native Application Integration
5. Appendix

Resources
HTML5 ReaderControl Hash Parameters

 © 2002-2016 PDFTron Systems, Inc. 4 of 24

1. Introduction

Audience and Scope
This document is intended for developers wishing to integrate PDFTron WebViewer with their Web
application. It covers the basic usage of the WebViewer.js wrapper, as well as discusses advanced
customizations to the Desktop and Mobile viewers.

WebViewer Components
PDFTron WebViewer is a cross-platform solution that offers a seamless and effective way to embed
viewing of PDF and other document formats directly within your Web application. There are three
major components to this solution:
1. The client-side viewer application
2. The document conversion component (if necessary)
3. Your own server for document hosting and annotation handling

Client-side Viewer Application

The PDFTron WebViewer is a solution that delivers consistent and reliable document viewing across
modern browsers. WebViewer uses HTML5 technology to take advantage of the latest browser
features. For pure document viewing, the WebViewer does not require any server-side scripting. The
document files can be served directly from any static Web server.

Platforms Supported

● HTML5 (any modern browser with Canvas support; e.g. IE9+, Chrome, FireFox, Safari,
Opera).

● Web browsers on iOS (iPad/iPhone), Android and other mobile platforms.
● Native mobile SDKs on Android and iOS.
● .NET/WPF, C/C++, JAVA apps on Windows, Linux, and Mac OS X.

WebViewer Document Backends

WebViewer supports two document backends. It can view PDF documents directly using the
PDFNetJS backend and it can support viewing a wide range of document file formats (including PDF)
by converting all documents to the XOD format. There are benefits to both approaches in different
situations which are outlined below.

 © 2002-2016 PDFTron Systems, Inc. 5 of 24

PDFNetJS
Using PDFNetJS as the document backend allows you to leverage the power of PDFNet rendering in
the browser. When using this backend there is no conversion of documents required. The trade off is
that only PDF documents can be viewed and PDFNetJS is not currently supported on mobile devices.

Viewing PDF files with PDFNetJS is licensed differently from the XOD backend and requires a license
key to be specified when creating the viewer. Without a license key a demo stamp is applied.

XOD Backend
Using the XOD backend allows many different file formats to be viewed as long as they are converted
to the XOD format. The XOD conversion step performs optimizations on the file which allows fast and
accurate rendering on both desktop and mobile devices.

PDFTron provides the XOD conversion component in two forms. You can choose the one that suits
your deployment, requirements and licensing needs.

PDFNet SDK with WebViewer Add-on
With this option, you get the benefit of using PDFNet SDK, our full-featured PDF SDK, on your server.
Essentially you would be doing your own XOD conversions on your server with PDFNet. You can do
more advanced things here, pre-processing the document: e.g. apply your own watermark to all
converted documents, add/remove pages to converted documents, merge annotations back to the
original PDF. This gives you the most flexibility and control over your documents.

You can convert your documents to XOD documents using the pdftron.PDF.Convert class.
Specifically, the method Convert.ToXod() converts the input file to XOD format and saves to the
specified path.

To specify the convert options for the conversion, the user should use the Convert.XODOutputOptions
class and pass it as a parameter in the ToXod() method.

For more information, see http://www.pdftron.com/pdfnet
[Licensing: Available with Redistributable Licensing]

DocPub Command-line Converter
With this option, you run the conversions with a command-line tool. This works best if you have a
static set of documents you want to convert in a batch, and upload to a server all at once.

For more information, see http://www.pdftron.com/docpub/index.html
[Licensing: Available with Redistributable Licensing]

http://www.pdftron.com/pdfnet
http://www.pdftron.com/licensing/index.html?gotoPage=pdfnet.html
http://www.pdftron.com/docpub/index.html
http://www.pdftron.com/licensing/index.html?gotoPage=nocpu

 © 2002-2016 PDFTron Systems, Inc. 6 of 24

Table 2. XOD Conversion Features by Converter Types

 PDFNet SDK DocPub CLI

XOD Conversion ✓ ✓

XOD Encryption ✓ ✓

MS Office Documents Support ✓ (Windows only) ✓ (Windows only)

Document Pre-Processing (PDF) ✓

Built-in Annotation (XFDF)
merging ✓

On-the-fly Conversion Streaming ✓ ✓

Your Server Component
In order to view your documents on the web, both the viewer application (WebViewer) and your PDF
or converted XOD documents need to be hosted on a web server. Moreover, if you need access
control over your documents or manage user-created annotations, you will need your own server to
handle this logic.

WebViewer and Document Hosting
There are a couple of things to keep in mind when hosting WebViewer and XOD documents. For the
best performance, ensure that your web server supports the Range request header. WebViewer
makes byte range requests to download only parts of the XOD file at a time; this allows the
WebViewer to start rendering documents without having to download the entire file first. Also, make
note that ideally the WebViewer application and the XOD files should be hosted in the same domain
host to avoid the same origin policy restrictions of the browser.

For WebViewer with PDFNetJS the entire PDF file is downloaded up front so support for range
requests is not necessary.

Annotation Handling
A big area of interest for the WebViewer is support for annotations. WebViewer provides a fully-

 © 2002-2016 PDFTron Systems, Inc. 7 of 24

functional annotation framework in HTML5 that is compatible with PDF XFDF annotations.

While the WebViewer is provided as a pure client application, it also has built-in support for
communicating with a back-end server. If an annotation server path is specified in the WebViewer, it
will issue AJAX requests to fetch and save the annotations.

Since the server-side handling of annotations is heavily linked with the application logic, it is up to the
developers to implement. WebViewer provides a sample implementation of a PHP annotation handler.
Please refer to the section on Annotations in this document for more details.

 © 2002-2016 PDFTron Systems, Inc. 8 of 24

2. WebViewer Quick Start
At the heart of it, WebViewer aims to provide document viewing capabilities in modern desktop and
mobile devices.

Under the hood, DocumentViewer is the core API that renders the document and creates canvas
elements for each page. DocumentViewer by itself is powerful and can be used to implement custom
viewing experiences. (See the WebViewer samples “Flipbook Demo”)

ReaderControl on the other hand, is a full-featured UI control that builds on top of the
DocumentViewer. ReaderControl adds common interface elements expected of a document reader: a
tool bar for navigation and panels for thumbnail views, bookmarks and annotations.

WebViewer.js is an API wrapper that allows any ReaderControl type to be created and controlled via a
single interface. It greatly simplifies the creation of the viewer and also provides utilities like the
detection of the browser support.

For the best user experience out-of-the-box, it is recommended to use WebViewer.js. However, each
of the components can be used individually to suit your use case.

Using JavaScript with WebViewer

To create your own WebViewer web page from scratch follow these steps.

1. Create an HTML page.

2. Add the necessary scripts to the <head> tag of the HTML page.

<script src="jquery-1.7.2.min.js"></script>
<script src="WebViewer.min.js"></script>

Alternatively you can include the following un-minified version of WebViewer.js

<script src="WebViewer.js"></script>

WebViewer.js depends on jQuery, so it must be included. Including WebViewer.js (or
WebViewer.min.js) will allow you to use the WebViewer class in your JavaScript code.

3. Create a <div> tag in the HTML <body> and give it an id. This will be the container for the web
viewer.

<div id="viewer"></div>

4. Add the following script to create a new instance of the WebViewer.

 © 2002-2016 PDFTron Systems, Inc. 9 of 24

<script>
 $(function() {
 var viewerElement = document.getElementById('viewer');
 var myWebViewer = new PDFTron.WebViewer({
 type: "html5",
 initialDoc: "GettingStarted.xod"
 }, viewerElement);
 });
</script>

The script above will create and render a PDFTron WebViewer control on the HTML page as a child of
the provided <div> element. The viewer will then load the document as specified by initialDoc
immediately.

As a start, you can load the sample file “GettingStarted.xod” included in the download package.

To load a PDF file just set initialDoc to a pdf document (e.g. “GettingStarted.pdf”). To display PDF
documents without a demo stamp you’ll need to input your PDFNetJS license key as an option, e.g. l:
"Your License Key Here"

5. It is now possible to use the “myWebViewer” variable to invoke ReaderControl’s methods. For
example, the following code demonstrates how to load another document:

 myWebViewer.loadDocument("myOtherFile.xod");

Additionally, you can use jQuery event handlers to react to changed events.
For example, the following code shows how to be notified when the page changes.

$(viewerElement).on('pageChanged', function(event) {
 alert("Current page is: " + myWebViewer.getCurrentPageNumber());
});

With the WebViewer methods and event binding, you have the power to create your own GUI
interface*.
Please refer to the API documentation for other methods and events which can be used. The API
reference can be found under doc/ or online at:
http://www.pdftron.com/webviewer/demo/documentation.html

*Please note that the HTML5 Mobile viewer is optimized for mobile devices and therefore cannot be
controlled at as fine a level through WebViewer.js. If WebViewer.js detects that the user agent is a
mobile device, it will automatically switch to the Mobile viewer.

6. Save the HTML page under your web server. Make sure that the page is running on your web
server (through HTTP or HTTPS).

 © 2002-2016 PDFTron Systems, Inc. 10 of 24

3. WebViewer Features
Because the viewer is built with pure HTML, CSS and JavaScript, it is very customizable. There is no
compilation involved: simply specify custom JavaScript files.

Customization Framework
WebViewer was designed for easy customization of the user interface and custom features. The
ReaderControl allows you to specify a configuration file to run any custom JavaScript.

Configuration Options
For common user interface customizations, WebViewer makes this easy by loading configuration
options before initializing ReaderControl. Some configurable options include hiding the toolbar, hiding
the side panel, providing a server URL for annotation saving, and alert message strings.
To find out more about the options available, please see “ReaderControl.config” in the WebViewer
HTML5 API Reference. By default, the viewer will read the options in ReaderControlConfig.js. You can
either change this directly, or load an external configuration file.

External Configuration File
To make customizations simple and clean, you can define all your customizations in an external
JavaScript configuration file. For example to instantiate the viewer with a config file:
var myWebViewer = new PDFTron.WebViewer({
 config: “path/to/my/config/file.js”,
 …
}, viewerElement);

This is the preferred way to make customizations. In fact, all the WebViewer HTML5 samples use this
method of customization. The samples show a wide range of customizations, from creating
annotations on the fly to adding custom buttons and other functionality.

Pass Custom Data through WebViewer
To pass custom data to the HTML5 viewers you can add a “custom” property to the WebViewer
options that are passed to the constructor. For example to pass a custom object add this property:
custom: JSON.stringify({data: 10})

Then in a config file you can add the following line to retrieve it:
var custom = JSON.parse(window.ControlUtils.getCustomData());

Annotations and Forms
PDFTron WebViewer offers a powerful annotations framework that enables your application to have
interactive documents. The WebViewer annotation framework includes features for both markup

 © 2002-2016 PDFTron Systems, Inc. 11 of 24

annotations and form widgets.

Markup Annotations

With the PDFTron WebViewer, users can annotate their documents freely. The annotations can be
saved to an XFDF (XML Forms Data Format) file from the WebViewer, and be loaded back into the
document the next time it is opened. The WebViewer runs in a client-server architecture. Some
common use cases include:

● creating and saving annotations for a document
● loading annotation files (XFDF files) into a document
● collaboration: multiple users can view the same document, adding their own annotations, while

seeing the annotations that others have added
● merging annotations from an XFDF file into a document
● merging annotations from different XFDF files into one single XFDF annotations file

Permission Checking
When the WebViewer first loads a document, some user information is passed to it through the URL.
This includes the “user” and “admin” attributes. “user” specifies the user name of the current user
viewing the document, while “admin” specifies whether the user has administrative privileges.

The WebViewer has two levels of user permissions: admin and normal. Users with admin level rights
can do anything with annotations with no restrictions. Normal users on the other hand, are restricted to
editing the annotations that they put into the document. They are not allowed to modify or delete
annotations created by other users. Alerts will show up when they try to perform illegal operations on
the WebViewer. A special case is when the author of an annotation is undefined or null. In this case,
every user has permission to edit the annotation.

Read-only Mode
Read-only mode can be enabled by adding ‘enableReadOnlyMode: true’ as a property on the options
object passed to WebViewer. In read-only mode, existing annotations on the document cannot be
deleted or modified in any way, regardless of the permission level of the current user. However, the
user is still able to select them and read their notes if they have any. Furthermore, new annotations
cannot be added into the document. Read-only mode ensures that existing markups are not changed
and remain the only annotations on the document.

Note that the annotations toggle button can still be used in read-only mode to toggle all the
annotations on or off.

Toggle Annotations

 © 2002-2016 PDFTron Systems, Inc. 12 of 24

With the toggle annotations button located on the notes panel, the user can toggle between showing
and hiding all the annotations on the currently displayed document. The keyboard shortcut to do this is
Alt + T.

By default, annotations are toggled on. Depending on the current state, the toggle annotations button
will show either 'Show' or 'Hide'. Note that when annotations are toggled off, new annotations cannot
be added to the document unless visibility is enabled again. This is to ensure that no annotations are
displayed when the user has opted to hide all annotations. Also note that while annotations do not
appear on the document when annotations are toggled off, they are not removed from the document;
they are merely visually removed from the viewer.

Forms

The PDFTron WebViewer provides support for interactive forms, sometimes known as AcroForms. An
AcroForm is simply a collection of fields for gathering information interactively from the user. In a PDF
document there may be any number of fields appearing on any combination of pages. The combined
fields make up a single interactive form that can be imported or exported from the document.

During the conversion process from PDF to XOD, the form fields' name-value pairs, as well as all the
information needed to recreate the fields' appearances, are saved into the internal XFDF embedded in
the XOD document. This information that is stored inside the internal XFDF is used by the WebViewer
to recreate the field widget elements on the viewer.

Here are the major features of the PDFTron WebViewer form support:

● rendering of the form field widgets as from the original PDF document
● dynamic data entry into form field widgets
● loading and saving of form field data
● support for a number of form actions
● programmatic access to form field data, values and child widgets via the

Annotations.Forms.FieldManager class

Supported Field Widget Types

The PDFTron WebViewer supports all the form field types outlined in the PDF specification, except the
signature field.

Button Fields

A button field is an interactive control that the user can manipulate with the mouse. They include the
following:

● Push button: a purely interactive control that responds to user inputs without retaining a

 © 2002-2016 PDFTron Systems, Inc. 13 of 24

permanent field value
● Checkbox: a control that can be toggled between two states: on and off
● Radio buttons: a group of related toggles. Selecting any one from the group automatically

deselects all the others, such that at most one may be on at any given time

Text Fields

A text field is a box or space in which the user can enter text by using the keyboard.

Choice Fields

A choice field contains one or more text items, where at most one of which may be selected as the
field value. They include the following:

● list box: a scrollable control listing all the items that can be chosen
● combo box: a dropdown menu containing all the items that can be chosen

Supported Form Actions

The PDFTron WebViewer supports a subset of the standard PDF form action types that can be
attached to form widgets. These include the following:

Submit Form Actions

A submit form action transmits the name-value pairs of selected interactive form fields to a specified
URL, presumably the address of a server that will process the submitted data and send back a
response. The form data may be submitted in either HTML Form format, or XFDF format. If the export
type is specified as FDF format, the WebViewer would default the export format to HTML Form format.

Reset Form Actions

A reset form action resets selected interactive form fields to their default values.

JavaScript Actions

A JavaScript action causes a script to be executed when the widget is clicked. The script can be any
JavaScript that is stored in the action attribute of the widget or field in the PDF document, and almost
all available triggers (document open, page change, field value change, click, keypress, mouseover…
) are supported. When such a trigger is fired, the JavaScript will execute in a separate global scope
that simulates a subset of the PDF JavaScript API, allowing for complex interactive documents to be
viewed.

 © 2002-2016 PDFTron Systems, Inc. 14 of 24

Hide Actions

A hide action either hides or shows a widget element on the screen.

GoTo Actions

A GoTo action jumps the viewer to a specific page.

URI Actions

A URI action opens a URI in a separate browser window.

Document Named Actions

A document named action allows the viewer to go to a certain page. The WebViewer supports
NextPage, PrevPage, FirstPage and LastPage.

If using XOD files note that these form actions must be attached to the field widgets before the
document is converted from PDF to XOD. The attributes describing the action are exported into the
widget XFDF elements, and the WebViewer will create appropriate event handlers upon reading these
action attributes while loading the XFDF file.

Processing Annotations and Forms
Once users create markup annotations and fill in form fields, you will want to manage and process this
data. In the sections below we discuss how to save, load and merge annotation data in WebViewer.

Loading Annotations and Form Fields

If using XOD files then during the conversion process, an XFDF file is embedded into the XOD
document (internal XFDF), which stores all the existing annotations, links, and form data of the PDF
document.

When a XOD document is first loaded into WebViewer, it looks into the internal XFDF embedded into
the XOD document itself during the convert process, and uses that XFDF to load all of the following
stored in the XFDF: annotations, links, and form field widgets. Please note that ‘enableAnnotations:
true’ must be set as a property on the options object passed to WebViewer so that both annotations
and widgets are loaded in the viewer. On the other hand, links are loaded in the viewer regardless of
the value of ‘enableAnnotations’.

While the user can provide an external XFDF file to load annotations from the onDocumentLoaded()
callback function in ReaderControl.js, it is important to note that this external XFDF file would replace
the internal XFDF file as the source of annotations and form data loading. That is, only the annotations
and widgets stored in the external XFDF would get loaded, while the internal XFDF would be ignored.
Therefore, if the original PDF document contains an AcroForm, the external XFDF the user provides
must contain the form field widgets information inside it as well so that the PDFTron WebViewer can
recreate the form field widgets.

 © 2002-2016 PDFTron Systems, Inc. 15 of 24

Exporting Annotations and Form Fields

WebViewer allows multiple methods of exporting annotations and form fields in order to accommodate
the different needs of users. Both annotations and form field data are exported into one single XFDF
file. Here are the 3 most common methods to export annotations for XOD documents. Note that when
using WebViewer with PDFNetJS you can also easily download the current PDF document with
annotations.

1. Export to XFDF as local download
The user can download the XFDF file containing the annotations and form data of the document
directly from the WebViewer, by the use of dataURLs.

2. Export whole XFDF to server
The user can export the whole XFDF file (as a string) to the server, where this copy would replace the
central copy stored in the server for the document.

3. Export modified XFDF to server
WebViewer supports the export of only the modified annotations (newly added, modified existing,
deleted existing) to the server as an XML command. The command would contain only the
annotations and form fields that are changed. For added and modified annotations, the command
would include the XFDF representation of the annotation, while for deleted annotations, the command
would only include the ID of the annotation. Note that unlike the first two methods, this method does
not export the information needed to recreate the form field widget appearance. Only the form field
data, that is, name-value pairs, would be exported. If the user is exporting with the command
structure, it is important for the server to implement some kind of XFDF merging logic so that the
central XFDF copy can be updated properly.

This is the command structure used by the WebViewer:

 <?xml version="1.0" encoding="UTF-8" ?>
 <xfdf xmlns="http://ns.adobe.com/xfdf" xml:space="preserve">
 <fields />
 <add />
 <modify />
 <delete />
 </xfdf>

The fields element contains the modified form fields. The add, modify, delete elements contain the
added, modified, and deleted annotations respectively.

Merging XFDF Annotations

If annotations and form data are exported to the server using the XML command structure, then the
server must implement some logic to merge the XML command into the central XFDF copy for the
document. Although XFDF merging code can be easily implemented in any programming language,
there are readily-made solutions available.

 © 2002-2016 PDFTron Systems, Inc. 16 of 24

PDFNet SDK has the capability to merge the custom XML command from the WebViewer into an
existing FDF document. To merge the XFDF on the server then, the user can host PDFNet on the
server, and perform the following steps:

● fetch the central XFDF file for the document
● call FDFDoc::CreateFromXFDF() with PDFNet to create an FDF document from the XFDF

document fetched
● call FDFDoc::MergeAnnots() to merge the XML command into the FDF document. This is

where permission checking is done as well. For more information, please see the PDFNet
documentation

● call FDFDoc::SaveAsXFDF() to save the merged FDF document as XFDF. This will be the
new central XFDF copy of the document

Samples/Tutorials

Specifying the server URL for annotation loading/saving through Configuration Options

//In a custom js script

$.extend(ReaderControl.config, {
 serverURL : "annotationHandler.php",
 //defaultUser is the Author name for annotations
 defaultUser: 'Guest',
});

Loading form data during onDocumentLoaded()

// Inside the BaseReaderControl constructor the current default behaviour is
// to load an external XFDF if it exists, or the internal XFDF embedded in the XOD otherwise.

this.docViewer.setInternalAnnotationsTransform(function(originalData, callback) {
 var docIdQuery = {};
 if (me.docId !== null && me.docId.length > 0) {
 docIdQuery = {
 did: me.docId
 };
 }

 $.ajax({
 url: me.serverUrl,
 cache: false,
 data: docIdQuery,
 success: function(data) {
 if (!_.isNull(data) && !_.isUndefined(data)) {
 callback(data);
 } else {
 callback(originalData);
 }
 },

 © 2002-2016 PDFTron Systems, Inc. 17 of 24

 error: function(jqXHR, textStatus, errorThrown) {
 /*jshint unused:false */
 console.warn("Annotations could not be loaded from the server.");
 callback(originalData);
 },
 dataType: 'xml'
 });
});

Saving annotations as XFDF locally

// inside a config file call AnnotationManager.exportAnnotations();
// make use of dataURLs to download locally

var am = readerControl.docViewer.getAnnotationManager();

var xfdfString = readerControl.exportAnnotations();
var uriContent = "data:text/xml," +
 encodeURIComponent(xfdfString);
newWindow = window.open(uriContent, 'XFDF Document');

Exporting annotations as whole XFDF to server

// Inside AnnotationEdit.js, create an AJAX request to the server, with the data being the XFDF string
// returned by AnnotationManager.ExportAnnotations(). Note that server_url and doc_id are read in as
// the document is initially loaded

if (readerControl.serverUrl == null) {
 console.warn("Not configured for server-side annotation saving.");
 return;
}
var am = readerControl.docViewer.getAnnotationManager();
var xfdfString = am.exportAnnotations();
$.ajax({
 type: 'POST',
 url: readerControl.serverUrl + '?did=' + readerControl.docId,
 data: xfdfString,
 success: function(data) {
 //Annotations were successfully uploaded to server
 },
 error: function(jqXHR, textStatus, errorThrown) {
 console.warn("Failed to send annotations to server. " + textStatus);
 },
 dataType: 'xml'
});

Exporting modified annotations as XML command to server

// Create an AJAX request to the server, with the data being the command
// string returned by AnnotationManager.getAnnotCommand()

 © 2002-2016 PDFTron Systems, Inc. 18 of 24

if (readerControl.serverUrl == null) {
 console.warn("Not configured for server-side annotation saving.");
 return;
}
var am = readerControl.docViewer.getAnnotationManager();
var xfdfString = am.getAnnotCommand();
$.ajax({
 type: 'POST',
 url: readerControl.serverUrl + '?did=' + readerControl.docId,
 data: xfdfString,
 success: function(data){
 //Annotations were successfully uploaded to server
 },
 error: function(jqXHR, textStatus, errorThrown) {
 console.warn("Failed to send annotations to server. " + textStatus);
 },
 dataType: 'xml'
});

Sample server code to handle merging of XML command

<?php
include("../Lib/PDFNetPHP.php");

PDFNet::Initialize();

$con = mysql_connect("localhost","root","");
if (!$con) {
 die('Could not connect: ' . mysql_error());
} else {
 //echo "connected!";
}

if (array_key_exists('HTTP_RAW_POST_DATA', $GLOBALS)) {
 $command = $GLOBALS['HTTP_RAW_POST_DATA'];
}

if (isset($_REQUEST['did'])) {
 // check doc_id and fetch the correct xfdf
 mysql_select_db("test", $con);
 $doc_id = $_REQUEST['did'];
 $result = mysql_query("SELECT * FROM xfdf WHERE doc_id={$doc_id}");
 $row = mysql_fetch_array($result);
 $filename = $row['xfdf'];

 // call PDFNet to perform merges
 if (isset($command)) {
 $server_dir = "C:/wamp/www/server/";
 $xfdf_doc = FDFDoc::CreateFromXFDF($server_dir . $filename);
 $xfdf_doc->MergeAnnots($command);
 $xfdf_doc->SaveAsXFDF($server_dir . $filename);

 © 2002-2016 PDFTron Systems, Inc. 19 of 24

 }

 // return newest copy of annots
 header("Content-type: text/xml");
 echo file_get_contents($filename);
}
mysql_close($con);

?>

Advanced Features

Document Encryption/Decryption
Document encryption is supported by the XOD converters and the PDFTron WebViewer is able to
view these encrypted documents. Documents are encrypted with 128 bit AES (Advanced Encryption
Standard), a specification from the National Institute of Standards and Technology (NIST), and is used
by governments and businesses worldwide.

This allows you to implement certain forms of DRM which can be useful if you want users to only be
able to view documents inside the viewer and not simply download the files to view any time outside of
it. For example a web magazine viewer would likely not want users to simply download the magazines
and send them to their friends. Note that the files may be able to be downloaded but they would be
unviewable since they would be encrypted. Another option would be that the server doesn’t store the
password, the user just has to enter it in the viewer before they can view the document, effectively
password protecting the document.

WebViewer with PDFNetJS supports the viewing of password protected PDF files. A dialog box will
appear, prompting the user for the password.

Encryption on XOD Conversion

The process for encrypting a XOD document on conversion is simple; you just pass in a password to
encrypt the document with. Depending on which XOD conversion component you are using, the way it
works is:
For PDFNet with WebViewer Add-on
You can call the ToXod method with a XodConversionOption. You can specify the password in the
XodConversionOptions by calling SetXodEncryptPassword.

For DocPub
You can specify the encryption password as an additional command-line argument “--
xod_encypt_password myPassword”
e.g. docpub test.pdf -f xod --xod_encrypt_password mypassword

Decryption on Client

In the client-side JavaScript you will have to make some modifications to decrypt an encrypted XOD

 © 2002-2016 PDFTron Systems, Inc. 20 of 24

file. When using WebViewer you need to include an ‘encryption’ property on the options object of
WebViewer:

myWebViewer = new PDFTron.WebViewer({
 type: "html5",
 path: "",
 initialDoc: "test.xod",
 encryption: {
 p: "pass",

 type: "aes",
 error: function(msg) { alert(msg); }

 }
}, viewerElement);

If you are modifying ReaderControl directly then you will need to do a bit more work. Where the part
retriever is created you will need to pass in two additional parameters. The first of which is the
decryption function, window.CoreControls.Encryption.Decrypt and the second is an options object
literal. The options object should have a “type” property which should be “aes”, a “password” or “p”
property which should be the password used to encrypt the file and an optional “error” function. The
error function is called if there is an error while attempting to decrypt the document.

// Sample showing how to decrypt a file. The password could be obtained from the user
// or from a call to the server

var decrypt = window.CoreControls.Encryption.Decrypt;
var options = {
 type: "aes",
 p: "mypassword",
 error: function(msg) {
 alert(msg);
 }
};

var partRetriever = new window.CoreControls.PartRetrievers.HttpPartRetriever(doc,
true, decrypt, options);

 © 2002-2016 PDFTron Systems, Inc. 21 of 24

Offline Mode
The WebViewer provides support for downloading XOD documents for offline viewing. Once a
document has been downloaded it will be able to viewed without an Internet connection. An example
use case might be a user that downloads a document, loses their connection on the train but can still
continue viewing the entire document. Offline mode makes use of IndexedDB or WebSQL depending
on the browser. It can also make use of the HTML5 application cache to allow for (re)loading of the
page completely offline. Note that Internet Explorer 9 does not support any of these technologies and
therefore is not able to support offline mode. Also note that this is not currently supported by
WebViewer with PDFNetJS.

Getting Started
The HTML5 and mobile viewers have sample implementations of this which can be enabled by setting
the enableOfflineMode option in WebViewer.js. The functions for offline mode are provided on the
Document object. Before any other offline mode functions can be called you must call
InitOfflineDB(onComplete). You can pass in a callback function that will be called when the database
has been initialized.

There is also an offline library sample showing how to download and view multiple documents offline.
It uses the HTML5 application cache, so the page can be reloaded later on even without an Internet
connection. It also uses WebViewer’s startOffline option which allows the document to begin in offline
mode and load the document from the offline database.

Downloading a Document
To begin downloading a document call its StoreOffline(onComplete, onProgress) function. The
onComplete callback is called when the document has finished being downloaded or the download
has been cancelled. The onProgress callback is called on each update in progress of the download.
The fraction downloaded so far is passed in as a parameter.

To programmatically cancel an ongoing download you can call the CancelOfflineModeDownload()
function. It will cancel any ongoing HTTP requests for parts of the document. This could be hooked up
to a button as shown in offlineReady() in ReaderControl.js.

Enabling Offline Viewing
To actually enable offline viewing of a document you must call it’s SetOfflineModeEnabled(enabled)
function. Passing in true will enable offline mode i.e. the document will be read from the offline
database. Passing in false will disable it and the document will be read from the server. You can call
the GetOfflineModeEnabled() function to get the current state. You will probably not want to enable
offline viewing until the document has finished downloading or has been downloaded previously. To
check this you can call a document’s IsDownloaded() function.

 © 2002-2016 PDFTron Systems, Inc. 22 of 24

Internationalization
Internationalization is supported by WebViewer through the use of JSON language files. There is an
internationalization sample provided that shows how to add a custom button that allows the user to
select their preferred language.

Creating your own Translations
Several translation files are provided by default in html5/Resources/i18n. It is recommended that you
create a copy of the English translation file (translation-en.json) and work from there. Your custom file
should have a file name in the form translation-languagecode.json and simply needs to be placed in
the same directory.

To edit the translation file you need to change the values to the right of the colon. For example to edit
the “Full Screen” translation:
"controlbar": {
 "fullScreen": "My New Translation",
 …
}

A couple of the translation values have text that starts and ends with two underscores:
"pageNumber": "Page __number__",

In this case __number__ is a variable and will have its value substituted in at run time (eg Page 5).
Only the non-variables should be changed for these translations (eg. "Página __number__").

 © 2002-2016 PDFTron Systems, Inc. 23 of 24

4. Native Application Integration

While the HTML5 WebViewer was designed for web browsers, it can also be embedded directly in
native mobile applications. Viewing documents directly from the file system without an Internet
connection can be achieved this way. Note that WebViewer with PDFNetJS does not support this.

For Android, iOS and WinRT, WebViewer can be embedded in a WebView or UIWebView control. In
all cases, WebViewer will be able access documents directly on the device's file system.

Android
A sample of Android integration is included in the WebViewer package. It features a custom
ContentProvider (LocalFileContentProvider) that reads local XOD documents and delivers the
required parts to the WebViewer. Essentially, it simulates a web server’s byte range request
capabilities to provide content to the viewer only when it is needed.
On the WebViewer side, there is a part retriever (AndroidContentPartRetriever) that will handle making
the requests to the ContentProvider.

iOS & WinRT
The iOS and WinRT integration samples use special part retrievers which communicate with the app’s
UIWebView/WebView. Similar to Android they simulate a byte range request and the requested range
is passed to the app. The apps read the bytes directly from the file and base64 encode the data
before passing it back to JavaScript through a callback.

5. Appendix

Resources

For more resources, please see our PDFTron WebViewer support forum. WebViewer developers
frequently monitor the forum and answer questions.
https://groups.google.com/forum/#!forum/pdfnet-webviewer

Need more support?
Report a problem here: http://www.pdftron.com/support/reportproblem.html

Or email support@pdftron.com directly to get in touch with us

https://groups.google.com/forum/#!forum/pdfnet-webviewer
http://www.pdftron.com/support/reportproblem.html
mailto:support@pdftron.com

 © 2002-2016 PDFTron Systems, Inc. 24 of 24

HTML5 ReaderControl Hash Parameters
When the HTML5 viewer, ReaderControl, is used by itself outside of WebViewer.js, hash parameters
can be used to control the viewer. Boolean parameters can be specified as true/false, yes/no or 0/1.
Below is the list of parameters that are available:

a – A boolean parameter that specifies whether annotations are enabled or not. If 'a' is false,
annotations will not be displayed on the document, and no annotations-related operations can be
performed. See also: Toggle Annotations

admin – A boolean parameter that specifies whether the current user is an administrator. An admin
user can perform add/modify/delete operations on annotations without restrictions. See also:
Permission Checking

config – The URL to a JavaScript file that contains configuration options and customizations to the
ReaderControl. The config file can be from a different host than the ReaderControl.

d – The string that contains the path to the document to be displayed on WebViewer. This is the
relative path to the location which hosts ReaderControl.html.

did – The ID of the document to be displayed on WebViewer. It is a string without any special
restrictions. This ID, assigned by a server, can be used to fetch the correct XFDF annotations file if
there are multiple documents stored on server. On the other hand, 'did' can also be used as a session
token, in order to authenticate the client user.

filepicker - A boolean parameter that specifies whether to show a local file picker button in the toolbar.
This is only applicable when viewing PDF documents.

offline – A boolean parameter that specifies whether offline mode buttons are shown or not. There is a
button to download the document and a button to toggle offline mode on or off.

readonly – A boolean parameter that specifies whether readonly mode is enabled or not. Annotations
cannot be modified in any way in readonly mode. See also: Readonly Mode

server_url – The URL to the server script that handles AJAX requests sent from the WebViewer client.
For example, these can be requests to fetch the XFDF annotations file for the displayed document.

startOffline – A boolean parameter that specifies whether the viewer should start in offline mode or
not. The viewer must start in offline mode if the page will be viewed without a network connection.

streaming – A boolean parameter that specifies whether or not to use document streaming. Please
note that streaming refers to serving the XOD document AS it is converting. Using streaming mode
degrades performance and should only be used if XOD conversions are done on-the-fly or if the XOD
file host does not support byte range requests.

user – A string that specifies the current user of the WebViewer. This is used to record the author of
any new annotations added to the document, as well as perform user permission checks with regards
to operations on existing annotations on the document.

	1. Introduction
	Audience and Scope
	WebViewer Components
	Client-side Viewer Application
	Platforms Supported

	WebViewer Document Backends
	PDFNetJS
	XOD Backend
	PDFNet SDK with WebViewer Add-on
	DocPub Command-line Converter

	Your Server Component
	WebViewer and Document Hosting
	Annotation Handling

	2. WebViewer Quick Start
	Using JavaScript with WebViewer

	3. WebViewer Features
	Customization Framework
	Configuration Options
	External Configuration File
	Pass Custom Data through WebViewer

	Annotations and Forms
	Markup Annotations
	Permission Checking
	Read-only Mode
	Toggle Annotations

	Forms
	Supported Field Widget Types
	Supported Form Actions

	Processing Annotations and Forms
	Loading Annotations and Form Fields
	Exporting Annotations and Form Fields
	Merging XFDF Annotations

	Samples/Tutorials

	Advanced Features
	Document Encryption/Decryption
	Encryption on XOD Conversion
	Decryption on Client

	Offline Mode
	Getting Started
	Downloading a Document
	Enabling Offline Viewing

	Internationalization
	Creating your own Translations

	4. Native Application Integration
	5. Appendix
	Resources
	HTML5 ReaderControl Hash Parameters

